

Shaping the Future of AI in Healthcare

Nigam Shah

Acknowledgements

Funding:

- Federal NLM, NHLBI (Past: NIGMS, NHGRI, NINDS, NCI, FDA)
- Institutional Dept. of Medicine, Population Health Sciences, Dean's office, Stanford Hospital
- Fellowships Med Scholars, Siebel Scholars Foundation, Stanford Graduate Fellowship, NSF, DoD
- Industry Healogics, Janssen R&D, Oracle, Baidu USA, Amgen, Google, Apixio, CollabRx, Curai
- Philanthropic Gifts

Where I am coming from:

Institutional

Associate CIO for Data Science

Associate Dean of Research (Informatics, and our CTSA)

Faculty

- 1. The Green Button project
- 2. Stanford Medicine Program for AI in Healthcare
- 3. COVID-19 (last 90 days)

Let's meet Laura

A teenager with systemic lupus erythematosus, proteinuria, pancreatitis and positive for antiphospholipid antibodies

www.webmd.com/lupus/picture-of-acute-systemic-lupus-erythematosus

Let's meet Vera

A 70 year old Asian woman with a history of hypertension and asthma. She is on metformin but has uncontrolled diabetes.

A teenager with systemic lupus erythematosus, proteinuria, pancreatitis and positive for antiphospholipid antibodies

If (Risk > Th.)

www.webmd.com/lupus/picture-of-acute-systemic-lupus-erythematosus

then (do = X)Guide choice

A 70 year old Asian woman with a history of hypertension and asthma. She is on metformin but has uncontrolled diabetes.

DIGITALLY DRIVEN

Advancing Precision Health Takes Real Smarts— Artificially Speaking

The Stanford Program for AI Health Care

Al identifies risk of cholesterol-raising genetic disease

Stanford scientists and their collaborators have devised an algorithm to predict the risk of a disease that, untreated, can lead to heart attack or stroke.

Decide whether to act

then (do = X)

of how to act

http://greenbutton.stanford.edu

Lessons from 200 million patient timelines

:

Lessons in converting timelines to datasets

Decisions made:

- About source and choice of features
- About how much to agonize over textual data
- About handling of time
- About defining an electronic phenotype
- About building a cohort

Lessons in finding the right problems

	Science	Practice	Delivery		
Classify	Finding subtypes of heart failure with preserved ejection fraction	Who might be at high risk for a thromboembolism?	Who is burnt out?		
Predict	Increased Monocyte Count is marker for bad prognosis in fibrotic diseases	Which patients are likely to die in the next 3-12 months?	Who will be a no show?		
Act/Treat	Colon tumors can be treated by allogeneic chimeric antigen receptor T-cell Rx	What is a good second line drug to manage diabetes after metformin?	Request four back up nurses on Wed, for the Ortho OR.		

The Green Button project

Given a specific case, provides a report summarizing similar patients in Stanford's clinical data warehouse, the common treatment choices made, and the observed outcomes.

An institutional review board approved study (IRB # 39709).

http://greenbutton.stanford.edu

Pilot phase completed, August 2019 40 30 Internal Medicine Number of consults 20 etrospective Oncology C Dermatology Cardiology 10 Anesthesiology **`**Pediatrics

Unique physicians requesting consult

15

10

organized insightful

20

25

знс 🍀

0

0

5

How 'reliable' are the results?

- 1. Comparing with two reference sets
 - Applies to the treatment effect estimation consults
 - 13-22% were "false discoveries"
- 2. Comparing across datasets (Truven, Optum)
 - Agreed 68-74% of the time
 - About the same rate as how often RCTs agree with each other
- 3. Comparing patient matching strategies
 - Agreed 79% of the time

Green button →Informatics Consult

Stanford Medicine Program for AI in Healthcare

1. Implementation

- 2. Rethinking utility
- 3. Safety, ethics, and system effects
- 4. Training and partnerships

Compassionate intelligence

Can machine learning bring more humanity to health care?

Al identifies risk of cholesterol-raising genetic disease

Stanford scientists and their collaborators have devised an algorithm to predict the risk of a disease that, untreated, can lead to heart attack or stroke.

Example research and perspectives

- 1. What is the individual level **"cost" of group** level algorithmic fairness?
- 2. Can we **learn accurate ASCVD risk models** for populations not covered by the current cohorts?
- 3. Can we learn generically useful and reusable patient representations?

- 1. The 'best' model isn't always the most useful. (JAMA)
- 2. Machine-learning systems should reflect the ethical standards that guide other actors in health care. (NEJM)
- 3. Deployment cost—or the organizational effort required to integrate the output of a model into clinical workflow—should be a metric of evaluation. (Nature Medicine)

Palliative care and ACP: too little, too late

- 3.5 8% of inpatients are estimated to benefit from palliative care and advance care planning.
 - less than 50% are offered these options.

- Almost none (0.08%) are offered these options > 6 months before death.
 - most ACP notes written within one month of death

ACP Workflow: 21 steps, 7 handoffs, 48 hrs

Label choice: Predicting a surrogate event

We built models to predict:

- 3-12 month mortality.
- Probabilistic forecasts of time to event.

Evaluation using held out test-sets

- AUC = 0.85 | AUPRC = 0.41
- AUC = 0.81 | AUPRC = 0.39

Before deploying

- Validity of the surrogate label
 - 235 patients in a blinded prospective study.
- Model's predictions agree with experts' prognosis judgments for both 0-3, and 0-12 months.

Ensure that the increased workload is manageable

	Current	Future	% increase
General Medicine	343	583	69%
Total	1272	1512	19%

Before deploying

Establishing a baseline

A heuristic of "3 or more admissions", flags 21% of cases that are in need for advanced care planning at a cost of screening 2.46 cases to find one true case.

Quantifying improvement

- At 21% recall, the model prompts for screening of 1.08 admissions (cuts work into less than half).
- Fixing the number needed to screen at 2 admissions, the model has 85% recall (i.e. finds 4x cases).
- The model finds cases 58 days earlier than the "3 or more admissions" heuristic.

Is there utility, given cost and benefit of actions?

Utility	Desc	Value	Source
Utp	Utility for true positives (ACP is appropriate and provided)	-28,613	Gade et al. Net savings of 4855 * inflation multipler, subtracted from U ^{fn}
Ufn	Utility for false negatives (ACP is appropriate but not provided)	-37,085	Gade et al. original value of 21252 * inflation multiplier of 1.745
Ufp	Utility for false positives (ACP is not appropriate but provided)	-14,970	U ^{tn} plus inflation adjusted cost of intervention.
Utn	Utility for true negatives (ACP is not appropriate and not provided)	-11,646	Per capita spend in US, 2018, Peterson-Kaiser

Realized utility, given work capacity constraints

SHC 🍀 DIGITAL SOLUTIONS

Bottom line: is my model useful?

Impact of rejecting recommended ACP

Impact of capacity constraints

5 Optimistic

Optimistic

100%

4

Impact of "outpatient rescue"

Impact of loss to discharge

We need a "delivery science" for AI/ML solutions

2: Model Dev: How do we get the best f: X -> Y? Does using textual content help?

How do we train fair models?

Can we use f: X -> Y in the real world?

Can we get the data by 5 am, to make prediction by 6 am?

4: Running system = model applied to each case + execution of workflow.

Evaluate the impact of the *running system*

Maintenance is a liability – who will carry the pager?

Monitoring is unexplored

use an existing equation vs. learn a new equation.

Do we require new workflows?

1: Use case

Methods development + COVID-19

Weak Supervision

Use cheaper label sources to build training sets

No hand-labeled training data

more weak supervision info

https://www.snorkel.org/

Transform off-the-shelf ontologies, etc. into *labeling functions*

Entity	Domain	Rule F1	Inkfish F1
Disorder	EHR	72.4	76.6
Drug	EHR	82.8	86.9
Disease	Literature	75.7	79.7
Chemical	Literature	79.8	89.4

+4.1 to 9.6 F1 Improvement

Inkfish: Weakly Supervised Biomedical Entity Tagging

She reports that she had contact with +COVID patient on Feb 8

I am testing for COVID-19.

Rules

Precision 82.6 Recall 69.1 F1 75.2 Weakly Supervised Precision 87.2 Recall 74.5 F1 80.4

www.tinyurl.com/symptom-profile

Profiling presenting symptoms of patients screened for SARS-CoV-2

Nigam Shah Apr 3 · 2 min read

🎔 in 🗗 🗌 👓

Alison Callahan*, Jason A. Fries*, Saurabh Gombar, Birju Patel, and Nigam H. Shah (*equal contributors)

There is high interest in characterizing the presenting symptoms of individuals with COVID-19 to inform diagnosis and triage decisions as well as identify patients at risk of serious complications. As one of the many efforts in <u>Stanford Medicine's data science response</u> to the current pandemic, we developed a text processing system to identify clinical observations in the notes written by care providers when screening patients for COVID-19.

Clinical observation	Count (observation)	Count (observation & +ve)	Count (observation & -ve)	P(observation)	P(observation +ve)	P(observation -ve)	P(+ve observation)	P(-ve observation)	
cough	577	51	526	0.645	0.797	0.633	0.088	0.912	
dyspnea	526	41	485	0.588	0.641	0.584	0.078	0.922	
febrile	396	44	352	0.442	0.688	0.424	0.111	0.889	
sore throat	244	13	231	0.273	0.203	0.278	0.053	0.947	
chest pain	129	11	118	0.144	0.172	0.142	0.085	0.915	
congestion	124	7	117	0.139	0.109	0.141	0.056	0.944	
rash	109	6	103	0.122	0.094	0.124	0.055	0.945	
nausea and vomiting	101	8	93	0.113	0.125	0.112	0.079	0.921	
fatigue	99	12	87	0.111	0.188	0.105	0.121	0.879	
myalgia	98	10	88	0.109	0.156	0.106	0.102	0.898	
influenza	92	7	85	0.103	0.109	0.102	0.076	0.924	
tachycardia	91	8	83	0.102	0.125	0.100	0.088	0.912	
acetaminophen	81	10	71	0.091	0.156	0.085	0.123	0.877	
pain	81	5	76	0.091	0.078	0.091	0.062	0.938	
chills	80	14	66	0.089	0.219	0.079	0.175	0.825	
hypertension	77	5	72	0.086	0.078	0.087	0.065	0.935	
malaise	77	12	65	0.086	0.188	0.078	0.156	0.844	
headache	76	9	67	0.085	0.141	0.081	0.118	0.882	

We'd need about 20 symptoms to get P(+ve | symptoms) > 0.8

Viral RNA detected for up to 30 days

SHC SIGITAL SI Gombar et al, Persistent detection of SARS-CoV-2 RNA in patients and healthcare workers with COVID-19 29 accepted in the Journal of Clinical Virology

More at

- 1. http://shahlab.stanford.edu/greenbutton
- 2. http://shahlab.stanford.edu/paihc
- 3. http://shahlab.stanford.edu/covid19

email: nigam@stanford.edu

